Inhibition of JNK phosphorylation by a novel curcumin analog prevents high glucose-induced inflammation and apoptosis in cardiomyocytes and the development of diabetic cardiomyopathy.

نویسندگان

  • Yong Pan
  • Yi Wang
  • Yunjie Zhao
  • Kesong Peng
  • Weixin Li
  • Yonggang Wang
  • Jingjing Zhang
  • Shanshan Zhou
  • Quan Liu
  • Xiaokun Li
  • Lu Cai
  • Guang Liang
چکیده

Hyperglycemia-induced inflammation and apoptosis have important roles in the pathogenesis of diabetic cardiomyopathy. We recently found that a novel curcumin derivative, C66, is able to reduce the high glucose (HG)-induced inflammatory response. This study was designed to investigate the protective effects on diabetic cardiomyopathy and its underlying mechanisms. Pretreatment with C66 significantly reduced HG-induced overexpression of inflammatory cytokines via inactivation of nuclear factor-κB in both H9c2 cells and neonatal cardiomyocytes. Furthermore, we showed that the inhibition of Jun NH2-terminal kinase (JNK) phosphorylation contributed to the protection of C66 from inflammation and cell apoptosis, which was validated by the use of SP600125 and dominant-negative JNK. The molecular docking and kinase activity assay confirmed direct binding of C66 to and inhibition of JNK. In mice with type 1 diabetes, the administration of C66 or SP600125 at 5 mg/kg significantly decreased the levels of plasma and cardiac tumor necrosis factor-α, accompanied by decreasing cardiac apoptosis, and, finally, improved histological abnormalities, fibrosis, and cardiac dysfunction without affecting hyperglycemia. Thus, this work demonstrated the therapeutic potential of the JNK-targeting compound C66 for the treatment of diabetic cardiomyopathy. Importantly, we indicated a critical role of JNK in diabetic heart injury, and suggested that JNK inhibition may be a feasible strategy for treating diabetic cardiomyopathy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of a Novel Curcumin Analog in the Management of Diabetic Cardiomyopathy

Diabetes mellitus is becoming an epidemic health threat and represents one of the most prevalent chronic noncommunicable disorders. Cardiovascular complications are considered the leading cause of death for diabetic patients. Diabetes leads to undesired changes in cardiac structure and function, a condition commonly known as diabetic cardiomyopathy, which occurs independent of macroand microvas...

متن کامل

Inhibition of JNK by novel curcumin analog C66 prevents diabetic cardiomyopathy with a preservation of cardiac metallothionein expression.

The development of diabetic cardiomyopathy is attributed to diabetic oxidative stress, which may be related to the mitogen-activated protein kinase (MAPK) c-Jun NH2-terminal kinase (JNK) activation. The present study tested a hypothesis whether the curcumin analog C66 [(2E,6E)-2,6-bis(2-(trifluoromethyl)benzylidene) cyclohexanone] as a potent antioxidant can protect diabetes-induced cardiac fun...

متن کامل

Inhibition of JNK by compound C66 prevents pathological changes of the aorta in STZ-induced diabetes

Cardiovascular diseases as leading causes of the mortality world-wide are related to diabetes. The present study was to explore the protective effect of curcumin analogue C66 on diabetes-induced pathogenic changes of aortas. Diabetes was induced in male C57BL/6 mice with a single intraperitoneal injection of streptozotocin. Diabetic mice and age-matched non-diabetic mice were randomly treated w...

متن کامل

Targeting JNK by a New Curcumin Analog to Inhibit NF-kB-Mediated Expression of Cell Adhesion Molecules Attenuates Renal Macrophage Infiltration and Injury in Diabetic Mice

Macrophage infiltration contributes to the pathogenesis of diabetic renal injury. However, the regulatory mechanisms between macrophage infiltration and epithelial cell activation are still unclear. Our previous study found that C66, a novel curcumin analog, was able to inhibit inflammatory cytokine expression in vitro and in vivo. This study further elucidated whether C66 can prevent glucose-i...

متن کامل

LncRNA H19 inhibits autophagy by epigenetically silencing of DIRAS3 in diabetic cardiomyopathy

We previously generated a rat model of diabetic cardiomyopathy and found that the expression of long non-coding RNA H19 was downregulated. The present study was aimed to explore the pathogenic role of H19 in the development of diabetic cardiomyopathy. Overexpression of H19 in diabetic rats attenuated cardiomyocyte autophagy and improved left ventricular function. High glucose was found to reduc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Diabetes

دوره 63 10  شماره 

صفحات  -

تاریخ انتشار 2014